
A Mellin transform summation technique

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1987 J. Phys. A: Math. Gen. 20 4557

(http://iopscience.iop.org/0305-4470/20/13/054)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 10:27

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/20/13
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 20 (1987) 4557-4560. Printed in the U K  

COMMENT 

A Mellin transform summation technique 

Danny Birmingham" and Siddhartha Sen$ 
t The Blackett Laboratory, Imperial College, Prince Consort Road, London SW7 2BZ, U K  
$ School of Mathematics, Trinity College, Dublin, Ireland 

Received 13 March 1987 

Abstract. A method for regularising various divergent sums is presented. The method 
involves the Mellin transform and is illustrated by examples. 

We introduce a general method involving the Mellin transform which can be used to 
regularise various divergent sums which frequently appear in physics applications. 
The method amounts to obtaining an asymptotic expansion for Tr(e-A') as t+0+, 
where A is a positive definite operator with discrete eigenvalues. In a previous paper 
(Birmingham and Sen 1986) we have used the method to study the Candelas-Weinberg 
model (1984) for spaces M4x S" where M4 is four-dimensional Minkowski space 
and S 2 N  is a 2N-dimensional hypersphere. In this comment we will illustrate the 
method by way of a few simple examples. 

We define the zeta function of the scalar Laplacian A = -V2 on S N  by 

where the eigenvalues and degeneracies of A are given by (Candelas and Weinberg 
1984) 

(2n + N -  l ) ( n  + N-2) !  
( N  - l ) !  n !  

A:= n(n + N -  1) Dn = 

We note that the n = 0 term in (1) is omitted so that l A ( s )  is convergent and well 
defined for sufficiently large s. We would like to find an analytic continuation of l A ( s )  
to negative s so that l A ( s )  for s = 0, -1, -2 , .  . . , makes sense. To do this we consider 
the following sum 

x oc 

F( t )=Tr(e-A ' )=  1 Dn exp(-A;t)= C f ( n ,  t ) .  
n = l  n = l  

We define the Mellin transform by 

f ( s )  = JOm X s - l f ( X )  dx 

with the inverse transform given by 

f (x )  =L x-'f(s) ds. 
2 r i  c-ioc 
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Performing a Mellin transform in the ?-direction we have 

Hence 
r c + i m  

Performing a Mellin transform in the n-direction we get 

F ( t ) = -  lR(sr)j(s’, t )  ds’ e’> 1 
27ri ct- ix  

where lR(s’) is the Riemann zeta function. Now according to a theorem of Seeley 
(1969) the function l A ( s ) ,  which is only defined on the half-plane Re(s) > N / 2 ,  actually 
has an analytic continuation to a meromorphic function in the whole s-plane with 
simple poles as singularities. These poles occur at points 

(9) 

Using this information together with the fact that T(s) has simple poles at s = -m 
( m  = 0,1,2, . . .) we can obtain from (7) an asymptotic expansion for F (  t )  as t + O+ of 
the form 

where the coefficients (Yk/2  contain geometrical information about the manifold S N  
(Gilkey 1974, McKean and Singer 1967). For k = 0, 2, 4, .  . . , we have 

a k / 2  = [residue T(s)] lim l A ( s ) .  
s - - k / 2  s - - k / 2  

Here we have assumed that l A ( s ) r ( s )  has no double poles at s = - k  ( k  = 0, 1,2, .  . .). 
This follows from Seeley’s result and is verified by the absence of logarithmic terms 
in the expansion of F ( t ) .  However, if f(s’, t )  in (8) is known, we can evaluate the 
contour integral and obtain an alternative asymptotic expansion for F ( t )  in terms of 
Riemann zeta functions. This second asymptotic expansion will then provide the 
required analytic continuation of l A ( s )  to negative s. So, for example, if we are 
interested in finding an analytic expression for 5 A ( - 2 )  we examine the O( t 2 )  coefficient 
in the asymptotic expansion. From (11) we have 

a*= [residue T(s)] lim l A ( s )  = ; l A ( - 2 ) .  
s--2 s - - 2  

We then identify a2 with the O ( t 2 )  coefficient in the second asymptotic expansion. 
This will determine 5 A ( - 2 )  in terms of Riemann zeta functions whose continuation 
properties are known. 

As a first example we consider the case of the scalar Laplacian on S2. We have 
5 X 

F (  t )  = ( 2 n  + 1) - - c f ( n ,  t ) .  
n = l  n = 1  
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Now the Mellin transform of 
#,(n) = e - o n 2 - b n  

is given by (Oberhettinger 1974) 

i ( s )  = (2a)-'12r(s) exp(6' /8a)D- , (6 / (2~) ' /~)  (15 )  

M(n"#,(n))= $ ( s + a )  (16) 

where D,(x )  are the parabolic cylinder functions (Abramowitz and Stegun 1970). 
Using (15) together with the fact that 

we find 

f(s, t )  = 2 ( 2 t ) - ' " + ' ) / 2 ~ ( s  + 1 )  exp( t/8)D-,s+l,(( t/2)'12) 

+ (2t)-'I2r(s) exp( t/8)D-,(( t/2)'"). 

We now insert (17)  into (8) and distort the contour so as to pick up the pole 
contributions. In doing this we obtain an asymptotic expansion for F (  t )  as t + O+. If  
we are interested in obtaining analytic expressions for l A ( s )  (s = 0, - 1 ,  -2) we need 
an expansion up to O( t 2 ) .  This requires that we close the contour around the pole at 
s = - 5 .  The first pole occurs at s = 1 and corresponds to the pole of l R ( s ) .  Using the 
properties of D,(x )  (Abramowitz and Stegun 1970) we find that the contribution from 
the s = 1 pole is l / t  while the poles at s = (0, -1 ,  -2, -3,  -4, -5)  contribute O( to)), 
O(t'), O ( t 2 )  terms. We find 

where we have used the relevant properties of the Riemann zeta function (Abramowitz 
and Stegun 1970). We have thus achieved the required analytic continuation of l A ( s )  
to (s = 0, - 1 ,  -2). We note here that we can follow a similar procedure when A is the 
spinor Laplacian on S N  (Birmingham and Sen 1986). 

Consider now the zeta function defined by Whittaker and Watson (1984) 

l ( s , a ) =  C ( n + a ) - s  Re(s)> 1 .  
n =o 

We wish to determine 5(s, a )  fors  = 0, - 1 ,  -2, . . . . To do this we consider the following 
sum 

To obtain the asymptotic expansion for F ( t )  we first need to find an expansion for 
G ( t )  defined by 

n = 1  n = l  
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We have (Oberhettinger 1974) 

g(s, t )  = t-sr(s). (25) 

G ( t ) - 1 / t - i - t l , ( - l ) + f t 2 1 , ( - 2 ) +  . . .. (26) 

Proceeding as in the previous example we find 

By expanding the exponential e-'' in (23) and using (26) we find 

F (  t )  - l / t  + ( 4 -  a ) +  t ( & -  a / 2 +  a2/2)+  t2(-a/12+ a2/4-  a3/6)  +. , . , (27) 

l ( 0 ,  a )  = ( $ - a )  (28) 

l(-1, a )  = ( - & + a / 2 - a 2 / 2 )  (29) 

l( -2, a )  = ( -a /6+ a2/2 - a3/3).  (30) 

We can thus identify 

The results (28)-(30) are in agreement with those of Whittaker and Watson (1984). 
As a final example consider the zeta function defined by 

We now examine the function 

Proceeding as above we find 

F ( t ) -  T ' / ~ / ~ ~ ' / ~ + ~ - I T ' / ~  at ' / 2 /2 -a t /2" ' ' 2a2 t3 i2 /4+a2t2 /4+ .  . . , (33) 

We can thus identify 

fco, a )  = i !(-I, a )  = a12 !(-2,  a )  = a2/2. (34) 
From these examples we see that the Mellin transform technique which we have 

introduced can provide a useful way of regularising various divergent sums. The 
method relies on the fact that the Mellin transform of f (  n, t )  is known. Although this 
method is not the only means of regularising these sums it should be clear that it does 
provide an elegant and useful way of obtaining the required analytic continuation. 
Finally we note that the method can be used to obtain an analytic continuation of 
each of the zeta functions to s = -k/2 with k = 0 , 2 , 4 ,  . . . . This can be seen from ( 1  1 )  
and simply requires that we obtain the asymptotic expansion to O( t k ' 2 ) .  
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